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Abstract. In recent times, processing of data streams is gaining the
attention of the scientific community due to its practical applications.
Data stream is an unbounded and infinite flow of data arriving at high
rates and, therefore, the classical data mining approaches can not be used
straightforward in this scenario. Because of this, finding alternatives to
achieve better results in the discovering of frequent itemsets on data
streams is an active research topic. One of such alternatives is to develop
single-pass parallels methods that can be implemented in hardware to
take advantage of the inner parallelism of such devices. In this paper, a
new method that can mine high incoming rates data streams is presented.
As preliminary results, the proposed methods can mine in exhaustive
fashion the incoming data streams when its number of single items is low.
When the number of single items is high, the proposed method obtains
an approximate solution with no false positives itemset produced.

Key words: Frequent itemset mining, data stream mining, systolic tree,
custom hardware architectures.

1 Introduction

In recent years, there has been an explosion on the amount of data generated
by all sort of human activities. In order for this data to be useful, it must be
processed to obtain hidden knowledge. To perform this task, several approaches
have been proposed and implemented mainly in software-based systems that
offer limited performance when processing large amounts of data.

Data Mining aims to pride the tools and techniques needed to face such
immense data volumes. In Data Mining is extremely useful to record all the
occurrences of certain patterns and that is what frequent itemsets mining per-
forms. Frequent itemsets are those sets of data items that can be found always
together more than a given number of occurrences in data. In other words, the
goal of frequent itemsets mining is to determine which elements in a database
(or any other data source) commonly appear together.
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One scenario that is gaining a lot of attention of researchers is the data
streams mining. Analyzing data streams is an emerging need, and it can be found
in video and audio streams, network traffic, commercial transactions, etc, but
those applications need to be as fast as they can so hardware-based approaches
have been proposed. Frequent itemsets mining in hardware for data streams
addresses new challenges and only in [4] is conducted a research to frequent
itemsets mining on data streams.

This paper is structured as follow: in the next section, the theoretical ba-
sis that support this research is presented. A review of state-of-the-art is ad-
dressed in section 3 while section 4 presents the methodological foundations of
this research. The preliminary results are shown in section 5 while this paper is
concluded in section 6. Also in section 6 the future works is drafted.

2 Theoretical basis

Let I = {i1, i2, .., in} be a set of items:

Definition 1 (Itemset). A itemset X is a set of items over I such X =
{ii, ..., ik} ⊆ I.

Definition 2 (Transaction). A transaction T over I is a couple T = (tid, I)
where tid is the transaction identifier, and I is a X ⊆ I itemset.

Definition 3 (Support). The support of an itemset X is the number of trans-
actions that contains X.

An itemset is called frequent if its support is no less than a given absolute
minimal support threshold φabs, with 0 < φabs ≤ |D|, while D is the mining
database.

Definition 4 (Data streams). A data stream is a continuous, unbounded and
not necessarily ordered, real-time sequence of data items.

Three characteristics appear in data streams: (1) Items in stream arrive con-
tinuously at a high rate (Continuity); (2) Items can be accessed and processed
just once by the processing units in data streams (Expiration) and (3) The only
assumption that we can make about bounds of streams is that the total number
of data is unbounded and potentially infinite (Infinity).

Definition 5 (Window). A window in a data stream is an excerpt of items
that pertain to the stream.

Windows can be created using one of this three approaches: (1)Landmark
window model, (2)Damped window model and (3)Sliding window model. The
Landmark Window Model employs some points (called landmark) to start record-
ing where a transaction begins and ends. The support count of an itemset in this
model is the number of transactions containing it between the landmark and the
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current time. To distinguish between the oldest and new transactions a varia-
tion of this model was proposed and named Damped Window Model. Damped
Window Model assigns different weights to transactions where the recent ones
have weight near to 1, and older ones have weight near to 0. As time passes, the
weight of each transaction will be degraded. The Sliding Window Model uses
only the latest W transactions in the mining process. As the new transactions
arrives, the old ones in the sliding windows are excluded. The use of this model
impose a restriction: as some transactions will be excluded of the mining process,
methods for finding expired transactions and for discounting the support count
of the itemsets involved are required.

2.1 Reconfigurable Computing

Reconfigurable Hardware Computing is referred to the use of hardware devices
in which the functionality of the logic gates is customizable at runtime, and
FPGAs are the main exponent of this approach. The architecture of a FPGAs
is based on a large number of logic blocks which perform basic logic functions.
Because of this, an FPGA can implement from a simple logical gate, to a complex
mathematical function. FPGAs can be reprogrammed; that is; the circuit can be
“erased” and then, a new architecture that implements a brand new algorithm
can be implemented. This capability of the FPGAs allows the creation of fully
customized architectures, reducing cost and technological risks that are present
in traditional circuits design.

Although there are other hardware development platforms for data streams
mining (such as Graphics Processing Units, named GPUs), FPGAs are better
suited. GPUs are graphic accelerators which are interfaced by the PCI port;
while FPGAs can be interfaced by the PCI port, the USB port or the Ethernet
connector (Ethernet interface is ideal for network stream analysis). Due to the
high incoming rates of items in data streams, the processing such items must be
done as fast as it can. FPGAs are great for real-time systems, where even 1ms of
delay might be too long, and this capability are extremely valuable for mining
data streams. GPUs are ideal for hybrid applications where some instructions
must be accelerated while FPGAs can accelerate the whole process. Because of
this, FPGA is better suited to be chosen as a development platform for accelerate
frequent itemsets mining on data streams.

3 Algorithms review in hardware

Hardware implementations of algorithms take advantage of inner parallelism of
the hardware device used. In consequence, such devices gain every day more
attention to be employed as development platforms. After a proper review of
the state-of-the-art, it can be organized as it is shown in table 1.

Analyzing the revised literature it can be noticed that frequent itemsets
mining on data streams using reconfigurable hardware is an interesting research
area so, it is worth to propose new parallels algorithms to face such task. In
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Table 1. Algorithms and architectures for frequent itemsets mining in data streams
using FPGAs. DB stands for Database; Apr for Apriori and FPG for FP-Growth.

Title Based Source

An Architecture for Efficient Hardware Data Mining Using Re-
configurable Computing Systems. [2]

Apr DB

Hardware Enhanced Mining for Association Rules. [5] Apr Stream

Hardware-Enhanced Association Rules Mining With Hashing
and Pipelining. [12]

Apr DB

Novel Strategies for Hardware Acceleration of Frequent Itemset
Mining With the Apriori Algorithm. [11]

Apr DB

Mining Association Rules with Systolic Trees.[9] FPG DB

A Reconfigurable Platform for Frequent Pattern Mining.[8] FPG DB

A Highly Parallel Algorithm for Frequent Itemset Mining. [6] FPG DB

Design and Analysis of a Reconfigurable Platform for Frequent
Pattern Mining. [10]

FPG DB

An FPGA-Based Acceleration for Frequent Itemset Mining. [13] Eclat DB

FPGA Acceleration for Intersection Computation in Frequent
Itemset Mining. [7]

Eclat DB

this task, there are three main approaches: algorithms that use Apriori as the
starting point, algorithms that use FP-Growth and those that use Eclat.

The algorithms that mimic the Apriori-based schemes in hardware require
loading the candidate itemsets and the database into the hardware. This strategy
is limited by the capacity of the chosen platform: if the number of items to
manage is larger than the hardware capacity the items must be loaded separately
in many consecutive times degrading performance. In consequence, the support
counting must be executed several times, and this is a very time consuming
approach. In addition, several candidates itemsets and a large database may
cause a bottleneck in the system. This issues are forbidden in data streams
mining.

As well as Apriori-based algorithm, the FP-Growth-based algorithms need
to download the mining database to FPGA. They also need two passes over the
database except Mesa et al. [6] but this one still need to download the database
to the hardware device. This is impractical in data stream mining scenario due
to the Expiration restriction. Like others reviewed algorithms, authors focused
their attention in better data structures rather than substantial theoretical con-
tributions. As rule, FP-Growth based algorithm can handle a limited number
of itemsets, less than 11 in the better cases which is inadequate for real-life ap-
plications. Nevertheless, those algorithms based on FP-Growth use the FP-Tree
data structure which is very well suited for data stream mining applications.

Eclat-based algorithm uses the vertical database representation in order to
save memory and processing time. It use the intersection of items to compute
the support, and it is more efficient than hash-trees. All the Eclat-based imple-
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mentations propose an hybrid approach, where the most consuming functions
were download to hardware while software controls the execution flow and data
structures. Due to the bandwidth limitations of used hardware devices, very
large transactions must be segmented. In the reviewed papers, no segmentation
strategies were reported. Although the vertical database representation allows
to save memory and processing time, it is not compatible with the Expiration
restriction. Also, the pruning strategy in Eclat is inefficient and introduces de-
lays that affect the performance of the algorithms. This two issues make Eclat
impractical to be used as a starting point for data stream mining algorithms.

4 Methodological foundations

4.1 Research problems

Modern applications generate huge data volumes in data streams way. Due to
the increase of this kind of applications it is necessary obtain useful knowledge
from those data streams. As it was previously defined, a data streams are a
continuous, ordered and potentially infinite sequence of items in real time where
data arrives without interruptions at a high speed. Also, data can be accessed
only once, and the only assumption that we can make about bounds of streams
is that the total number of data is unbounded. It is unrealistic to store all
items of data streams to process them offline. These characteristics impose extra
difficulties to algorithms and systems that process such data sources.

Due to the high incoming rate, the impossibility to store the data and the
huge volumes of items in streams, software that analyzes such data streams can
not process exhaustively all items. The supporting hardware and software are
not capable to deal with such intense processing. Instead, commercial applica-
tions that mine data stream use an “approximate” processing approach. That is,
they do not analyze all items that are present in a flow; instead, they use some
heuristic or probabilistic approach to determine which item is the most likely
to contain the desired information. There are applications that need intense
processing requirements, e.g. intrusion detection systems or network analysis
systems. In this kind of applications, the immediate data analysis and near-real-
time response are extremely valuable. To fulfill these requirements is needed to
propose new parallel algorithms running on high-performance computing devices
such as FPGAs. FPGAs can perform tasks in a high parallel fashion, and this is
very useful in data streams processing applications.

Frequent itemsets mining is one technique that is commonly used in data
knowledge extraction and have been used with success in databases scenario. To
mine frequent itemsets in data streams efficiently, an alternative would be to
develop new parallel approaches that use custom hardware architectures. In the
reviewed literature, there is only one architecture to mine frequent itemsets on
data streams [5].
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4.2 Aims and expected contributions

The general aim of this research work is: To develop parallel methods for fre-
quent itemsets mining in data streams that outperform the state-of-the-art algo-
rithms for data streams analysis and that are suitable for being implemented in
hardware-accelerated platforms. The proposed methods must outperform in one
order of magnitude (at least) the state-of-art algorithms implemented in software.

To fulfill the general aim, some specific aims were proposed: (1) To propose a
flexible method for separating the incoming data stream into windows that it can
be used by the support counting algorithm; (2) To adopt data structures that
can be used in frequent itemsets mining on data streams; (3) To develop new
algorithms for frequent itemsets mining that use the separation method selected
and the data structures adopted; (4) To obtain parallel hardware implementation
of the algorithms mentioned above that can perform frequent itemsets mining
at least 1 order of magnitude faster (without compromising effectively) than
state-of-the-art software implementations.

As results of this research, the following contributions are expected: (1) A new
method for frequent itemsets mining on data streams; (2) A design of parallel
one-pass algorithms to mine frequent itemsets on data streams and (3) A custom
hardware architecture that implements the proposed algorithms. This custom
architecture will take advantage of inner parallelism provided by the hardware
device used in its implementation.

5 Preliminary Results

After the literature was reviewed, the conclusion observed is that the selected
window model should not be an issue: our method, and therefore, the hardware
designs derived, must work fine regardless of the window model selected. So, the
window model will be an input parameter.

The basic idea of the presented method is to develop a tree structure of
processing units where the itemsets in data streams flow from the root node to
leaf nodes. The tree structure presented is named systolic tree and each node
has one child and one sibling. For leaf nodes, the child and sibling nodes are null
nodes. In this structure, the child node contains, as a prefix, the itemset handled
by its parent. Fig. 1 represents the systolic tree.

Using the Apriori property, which states that any subset of frequent itemset
must be frequent [1] if a node is regarded as frequent then its parent is frequent
too with equal or greater frequency counting. This property is specially useful
for frequent itemset selection strategy.

The size (in number of nodes) of the systolic tree is determined by the ca-
pacity of the development platform. Assuming that the development platform
contains enough computational resources, the size (in number of nodes) of the
systolic tree will be k = 2n − 1. The nodes in the systolic tree have its own
processing logic, which it is presented in Algorithm 1. The systolic tree data
structure presented in this paper implements a distributed control scheme: the
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Fig. 1. Systolic tree data structure to mine frequent itemsets on data streams.

processing and control logic are distributed in each node of the systolic tree.
This allows saving computational resources due to the logic reduction.

When the data stream arrives, each transaction is flowed into the systolic
tree to determine the frequency of each item. Algorithm 1 depict the frequency
counting scheme proposed. This algorithm will be executed in parallel in each
node of the systolic tree. After the frequency of each itemset is calculated, those
itemsets that can be regarded as frequent are determined using a backtracking
strategy and the Apriori property.

The proposed method is designed to be implemented in a custom hardware
architecture. To validate the concept introduced in this research, it was pro-
grammed sequentially in software using C# language over the .Net Framework
platform.

As it was explained earlier, the systolic tree can process a limited number of
items determined by capacity of the hardware device used. If the chosen develop-
ment platform can hold a systolic tree with 1024 nodes, the maximum number of
different items in the incoming transactions that it can be process will be 10. If
the number of different items in the incoming transaction is greater, some item-
sets will be not processed and therefore, the mining process will be approximate
with no false positives produced. However, if the development platform can hold
all the possibles itemsets, the mining process will be exact.

Some experiments were conducted and the pursued objectives were to ver-
ify the correct performance of the proposed algorithms and to measure how
the systolic tree grows according to the length of incoming transactions. To ac-
complish these goals, MSNBC dataset from UCI repository [3] was used. This
dataset is click-stream data that contains 989,818 sequences. The number of dis-
tinct item in this dataset is 17. The average number of itemsets per sequence
is 13.33. The average number of distinct item per sequence is 5.33. In order to
validate that the frequency counting computed by algorithm 1 is correct, it was
assumed that the systolic tree can handle all possibles itemsets for used dataset.
It is important to notice that for various selected support values, the conducted
experiments demonstrate that the frequent itemsets detected by the proposed
method and its frequency countingwas the same that the one obtained by the
baseline FP-Growth.
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Algorithm 1: Frequency counting.

Input: Transaction’s window
Output: Systolic tree with the counting frequency of each itemset.

ni ←− systolyc tree.RootNode;1

foreach itemset Si in window buffer do2

Flush Si into ni;3

if ni.IsOccupied == false then4

ni.IsOccupied = true;5

ni.Label.Add(Si[0]) ni.Counter + +;6

S̃i = Si.Exclude(ni.Item) if S̃i.IsEmpty == false then7

StartParallalelBlock:8

ni ←− ni.ChildNode;9

Flush S̃i to ni and go to step 4;10

ni ←− ni.SiblingNode; Flush S̃i to ni and go to step 4;11

EndParallelBlock;12

else13

if Si.Contain(ni.Label) == true then14

ni.Counter + +;15

S̃i = Si.Exclude(ni.Item);16

if S̃i.IsEmpty == false then17

StartParallalelBlock:18

ni ←− ni.ChildNode; Flush S̃i to ni and go to step 4;19

ni ←− ni.SiblingNode; Flush S̃i to ni and go to step 4;20

EndParallelBlock;21

else22

ni ←− ni.SiblingNode; Flush Si to ni and go to step 4;23

return systolic tree;24

Fig. 2 shows graphically the results obtained. Experiments show that the
systolic tree grows exponentially (and therefore memory consumptions grow ex-
ponentially too) concerning to the length of the incoming transactions. This
effect can be attenuated using larger hardware devices or using external mem-
ories, but it is still an issue to be taken in account. The processing time grows
linear concerning of the length of the incoming transactions. These values are
calculated for the sequential software implementation. The proposed method is
designed to be implemented in parallel so the processing will be executed simul-
taneously, and after some initial time, the results will arrive continuously.

The software implementation of the proposed method pursuits the main ob-
jective of determining whether it is a valid solution for frequent itemset mining
on data streams while in future works, hardware implementations will be devel-
oped. Experiments demonstrate that for different support values, the frequent
itemsets and its frequency counting are the same that obtained by the baseline
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Fig. 2. Behavior of the proposed method while the length of the incoming transactions
grows. a) Memory consumption graph. b) Systolic tree size graph and c) Processing
time graph.

software. The length of the incoming transactions, and therefore the systolic tree
size, can affect these results. In this case, not all of the frequent itemsets will
be returned, but those itemsets that are regarded as frequents by the proposed
method will be regarded as frequent with the same frequency counting by the
baseline FP-Growth. In other words, if the available computing resources of the
development platform selected can handle any length of the incoming trans-
actions, the mining process will be exact. Otherwise, the mining process will
be approximate with no false positives. The software implementation validates
the correct functioning of the proposed method and allows to understand its
functioning before implement it in hardware.

6 Conclusions and future work

Frequent itemset mining is a widely used Data Mining technique with outstand-
ing results in database scenario. Data stream mining is a recent research field
where frequent itemsets are introducing. Due to the continuity, expiration and
infinity characteristic of data streams it is necessary to explore alternatives that
allow to increase the efficiency of the mining process in such datasets. One alter-
native could be the design of parallel algorithms to be implemented in custom
hardware architectures.

This paper introduce a new parallel method for frequent itemset mining in
data streams which is designed to be implemented in a custom hardware archi-
tecture. The proposed method implements a distributed control logic among all
processing nodes, and each node execute the same algorithm. Some experiments
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were conducted, and it can be concluded that the proposed method correctly per-
forms this task. When it is executed in a device with no resources restrictions
then the exact mining process is performed. By the contrary, when restrictions
are imposed, then the approximate mining process with no false positives is per-
formed. From the experiments conducted it is derived that some adjustments
must be done to the proposed method in order to save computational resources
of the selected hardware device.

In future works, the implementation in hardware is mandatory. Also, a pre-
processing strategy in order to determine 1-frequent itemsets which will be flowed
into hardware architecture is the next step: this allow to optimize the nodes con-
sumption in systolic tree. A segmentation database strategy that allow to handle
larger datasets is an issue to deal with, and it is currently studying.
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